319 research outputs found

    Repulsion leads to coupled dislocation motion and extended work hardening in bcc metals

    Get PDF
    Work hardening in bcc single crystals at low homologous temperature shows a strong orientation-dependent hardening for high symmetry loading, which is not captured by classical dislocation density based models. We demonstrate here that the high activation barrier for screw dislocation glide motion in tungsten results in repulsive interactions between screw dislocations, and triggers dislocation motion at applied loading conditions where it is not expected. In situ transmission electron microscopy and atomistically informed discrete dislocation dynamics simulations confirm coupled dislocation motion and vanishing obstacle strength for repulsive screw dislocations, compatible with the kink pair mechanism of dislocation motion in the thermally activated (low temperature) regime. We implement this additional contribution to plastic strain in a modified crystal plasticity framework and show that it can explain the extended work hardening regime observed for [100] oriented tungsten single crystal. This may contribute to better understanding the increase in ductility of highly deformed bcc metals

    Anomalous diffusion mediated by atom deposition into a porous substrate

    Full text link
    Constant flux atom deposition into a porous medium is shown to generate a dense overlayer and a diffusion profile. Scaling analysis shows that the overlayer acts as a dynamic control for atomic diffusion in the porous substrate. This is modeled by generalizing the porous diffusion equation with a time-dependent diffusion coefficient equivalent to a nonlinear rescaling of timeComment: 4 page

    Kantian Meadows: A Just Nursing Home Grounded in the Categorical Imperative

    Get PDF
    This dissertation examines the structures of contemporary nursing homes and argues that the structure is conducive to the objectification (treatment of a human being as a non-person) of nursing home residents. In order to eliminate the potential for objectification, this project employs the Kantian categorical imperative as its theoretical framework. Based on that framework Kantian Meadows is created as an example of a just nursing home

    Predicting dislocation climb: Classical modeling versus atomistic simulations

    Get PDF
    The classical modeling of dislocation climb based on a continuous description of vacancy diffusion is compared to recent atomistic simulations of dislocation climb in body-centered cubic iron under vacancy supersaturation [Phys. Rev. Lett. 105 095501 (2010)]. A quantitative agreement is obtained, showing the ability of the classical approach to describe dislocation climb. The analytical model is then used to extrapolate dislocation climb velocities to lower dislocation densities, in the range corresponding to experiments. This allows testing of the validity of the pure climb creep model proposed by Kabir et al. [Phys. Rev. Lett. 105 095501 (2010)]

    Screw dislocation in zirconium: An ab initio study

    Get PDF
    Plasticity in zirconium is controlled by 1/3 screw dislocations gliding in the prism planes of the hexagonal close-packed structure. This prismatic and not basal glide is observed for a given set of transition metals like zirconium and is known to be related to the number of valence electrons in the d band. We use ab initio calculations based on the density functional theory to study the core structure of screw dislocations in zirconium. Dislocations are found to dissociate in the prism plane in two partial dislocations, each with a pure screw character. Ab initio calculations also show that the dissociation in the basal plane is unstable. We calculate then the Peierls barrier for a screw dislocation gliding in the prism plane and obtain a small barrier. The Peierls stress deduced from this barrier is lower than 21 MPa, which is in agreement with experimental data. The ability of an empirical potential relying on the embedded atom method (EAM) to model dislocations in zirconium is also tested against these ab initio calculations

    Loss of strength in Ni3Al at elevated temperatures

    Get PDF
    Stress decrease above the stress peak temperature (750 K) is studied in h123i single crystals of Ni3(Al, 3 at.% Hf ). Two thermally activated deformation mechanisms are evidenced on the basis of stress relaxation and strain rate change experiments. From 500 to 1070 K, the continuity of the activation volume/temperature curves reveals a single mechanism of activation enthalpy 3.8 eV/atom and volume 90 b3 at 810K with an athermal stress of 330 MPa. Over the very same temperature interval, impurity or solute diffusion towards dislocation cores is evidenced through serrated yielding, peculiar shapes of stress–strain curves while changing the rate of straining and stress relaxation experiments. This complicates the identification of the deformation mechanism, which is likely connected with cube glide. From 1070 to 1270 K, the high-temperature mechanism has an activation enthalpy and volume of 4.8 eV/atom and 20 b3, respectively, at 1250 K

    Flip dynamics in octagonal rhombus tiling sets

    Full text link
    We investigate the properties of classical single flip dynamics in sets of two-dimensional random rhombus tilings. Single flips are local moves involving 3 tiles which sample the tiling sets {\em via} Monte Carlo Markov chains. We determine the ergodic times of these dynamical systems (at infinite temperature): they grow with the system size NTN_T like Cst.NT2lnNTCst. N_T^2 \ln N_T; these dynamics are rapidly mixing. We use an inherent symmetry of tiling sets and a powerful tool from probability theory, the coupling technique. We also point out the interesting occurrence of Gumbel distributions.Comment: 5 Revtex pages, 4 figures; definitive versio

    Long-Term Impact of Cyclosporin Reduction with MMF Treatment in Chronic Allograft Dysfunction: REFERENECE Study 3-Year Follow Up

    Get PDF
    Calcineurin inhibitor (CNI) toxicity contributes to chronic allograft nephropathy (CAN). In the 2-year, randomized, study, we showed that 50% cyclosporin (CsA) reduction in combination with mycophenolate mofetil (MMF) treatment improves kidney function without increasing the risk for graft rejection/loss. To investigate the long-term effect of this regimen, we conducted a follow up study in 70 kidney transplant patients until 5 years after REFERENCE initiation. The improvement of kidney function was confirmed in the MMF group but not in the control group (CsA group). Four graft losses occurred, 2 in each group (graft survival in the MMF group 95.8% and 90.9% in control group). One death occurred in the control group. There was no statistically significant difference in the occurrence of serious adverse events or acute graft rejections. A limitation is the weak proportion of patient still remaining within the control group. On the other hand, REFERENCE focuses on the CsA regimen while opinions about the tacrolimus ones are still debated. In conclusion, CsA reduction in the presence of MMF treatment seems to maintain kidney function and is well tolerated in the long term

    Sinteza i antihipoksično djelovanje alifatskih i arilalifatskih amida kofein-8-tioglikolne kiseline

    Get PDF
    The synthesis of some aliphatic and arylaliphatic amides of caffeine-8-thioglycolic acid was studied. The structures of synthesized compounds were proved by microanalyses, IR- and 1H NMR data. Values of acute p.o. and i.p. toxicity in mice show lower toxicity compared to caffeine. Declines in spontaneous locomotor activity support the idea of depressive CNS activity of the compounds. Two compounds exhibited brain antihypoxic activity (5a and 5b against haemic and circulatory hypoxia, respectively).U radu je opisana sinteza alifatskih i arilalifatskih amida kofein-8-tioglikolne kiseline i njihova karakterizacija elementarnom analizom, IR- i 1H NMR spektroskopijom. Testiranja na miševima pokazuju da su sintetizirani spojevi primijenjeni p.o. i i.p. manje toksični od kofeina. Smanjenje lokomotoričke aktivnosti podupire ideju o njihovom depresivnom djelovanju na SŽS. Spojevi 5a i 5b djeluju antihipoksički u uvjetima krvne i cirkulacijske hipoksije u mozgu

    Kink pair production and dislocation motion

    Get PDF
    The motion of extended defects called dislocations controls the mechanical properties of crystalline materials such as strength and ductility. Under moderate applied loads, this motion proceeds via the thermal nucleation of kink pairs. The nucleation rate is known to be a highly nonlinear function of the applied load, and its calculation has long been a theoretical challenge. In this article, a stochastic path integral approach is used to derive a simple, general, and exact formula for the rate. The predictions are in excellent agreement with experimental and computational investigations, and unambiguously explain the origin of the observed extreme nonlinearity. The results can also be applied to other systems modelled by an elastic string interacting with a periodic potential, such as Josephson junctions in superconductors
    corecore